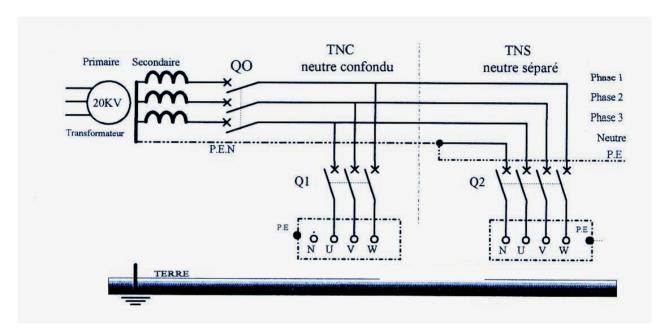
Le schéma de liaison à la terre TN

Date:


Objectifs:

Justifier la constitution et le comportement du circuit. Énoncer les différents principes de fonctionnement Savoir S1 : Distribution de l'énergie électrique S1-3 DISTRIBUTION

Signification:

la 1ere lettre ______la 2eme Lettre

Schéma et boucle de défaut :

En cas de defaut d'isolement, _	 	

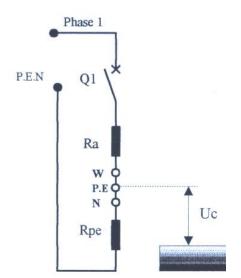
Calcul du courant de défaut I_d et de la tension de contact U_c :

On donne les valeurs suivantes :

 \ddot{A} Résistance des conducteurs : Ra = 0,1 Ω Rpe= 0,1 Ω

 \ddot{A} Résistance du défaut d'isolement : Rd=0 Ω

Ä Réseau 230/400V


Calcul de ld:

(d'après la loi d'ohm U= RxI qui donne I=U/R)

On peut estimer que : Id = ----- = -----

Application numérique :

I_d= ----- =

Calcul de Uc:

De plus, bien souvent Ra = Rpe (car les conducteurs ont la même longueur et la même section) et Rd = 0Ω

Donc $I_d = ---- = ----$

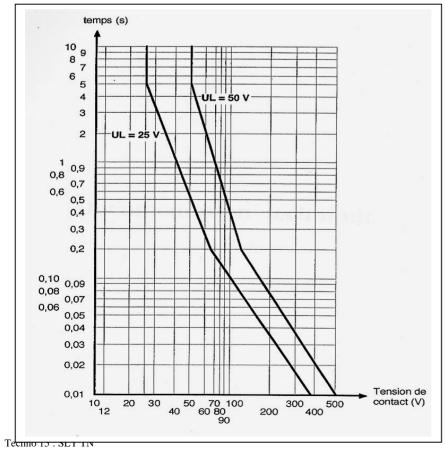
Cette relation nous donne aussi :

Rpe x I_d = -----= =

Finalement : Application numérique :

Uc= -----= =

Cette tension est elle dangereuse ?


Conclusions des calculs :

Lorsqu'il y a un défaut d'isolement dans un réseau TN, _____

Pour protéger les personnes, il est donc indispensable de

•

De plus il faut que le temps de réaction de l'appareil soit _____

On.	М	Δtı	ın	ıŧ	•
OH	u	CII	111	Iι	•

•

•

Il faudra Absolument veiller à garder:

Tr Tc

Exemple: quel est le temps de contact maximal pour une tension Uc=92 V, en milieu sec?